Shear-Induced Amyloid Formation in the Brain: II. An Experimental System for Monitoring Amyloid Shear Processes and Investigating Potential Spinal Tap Problems

نویسنده

  • Conrad N. Trumbore
چکیده

Liquid sheared amyloid-β (Aβ) initiates amyloid cascade reactions, producing unstable, potentially toxic oligomers. There is a need for new analytical tools with which to study these oligomers. A very small bore capillary flow system is proposed as a tool for studying the effects of liquid shear in amyloid research. This simple system consists of injecting a short cylindrical liquid sample plug containing dissolved amyloid into a liquid mobile phase flowing through an empty, very small internal diameter capillary tube. For liquid samples containing a single protein sample, under conditions in which there is laminar flow and limited sample protein molecular diffusion, chromatograms monitoring the optical protein absorbance of capillary effluent contain either one or two peaks, depending on the mobile phase flow rate. By controlling the sample diffusion times through changes in flow rate and/or capillary diameter, this tool can be used to generate aliquot samples with precise, reproducible amounts of shear for exploring the effects of variable shear on amyloid systems. The tool can be used for producing in-capillary stopped flow spectra of shear-stressed Aβ monomers as well as for kinetic studies of Aβ dimer- and oligomer-forming reactions between shear stressed Aβ monomers. Many other experiments are suggested using this experimental tool for studying the effects of shear on different Aβ and other amyloid systems, including testing for potentially serious amyloid sampling errors in spinal tap quantitative analysis. The technique has potential as both a laboratory research and a clinical tool.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shear-Induced Amyloid Formation in the Brain: I. Potential Vascular and Parenchymal Processes

Shear distortion of amyloid-beta (Aβ) solutions accelerates amyloid cascade reactions that may yield different toxic oligomers than those formed in quiescent solutions. Recent experiments indicate that cerebrospinal fluid (CSF) and interstitial fluid (ISF) containing Aβ flow through narrow brain perivascular pathways and brain parenchyma. This paper suggests that such flow causes shear distorti...

متن کامل

Human chorionic gonadotropin attenuates amyloid-β plaques induced by streptozotocin in the rat brain by affecting cytochrome c-ir neuron density

Objective(s): Amyloid β plaques, in Alzheimer’s disease, are deposits in different areas of the brain such as prefrontal cortex, molecular layer of the cerebellum, and the hippocampal formation. Amyloid β aggregates lead to the release of cytochrome c and finally neuronal cell death in brain tissue. hCG has critical roles in brain development, neuron differentiation, and function. Therefore, we...

متن کامل

Ellagic acid attenuates enhanced acetylcholinesterase reactivity in an experimental model of Alzheimer′s disease induced by beta amyloid25-35 in the rat

Background and Objective: Alzheimer’s disease (AD) is a multifactorial disease with debilitating consequences and few therapeutic strategies exist for it. With regard to antioxidant capacity and anti-β-amyloid polymerization potential of ellagic acid, this study was conducted to evaluate the effect of this substance on enhanced acetylcholinesterase reactivity in an experimental model of Alzheim...

متن کامل

P135: The Role of Amyloid Beta-Peptides and Tau Protein in Alzheimer\'s Disease

Alzheimer's desease is the most common age-related neurodegenerative disorder, and cognitive problems such as defects in learning and memory are of its symptoms.  Among the factors involved in the pathogenesis of the disease are biochemical disorders in protein production, oxidative stress, decreased acetylcholine secretion and inflammation of the brain tissue. Extra-neuronal accumulation ...

متن کامل

Comparing the Impact of Long-Term Exposure to Extremely Low-Frequency Electromagnetic Fields With Diverse Values on Anxiety, Memory, Learning, and Β-Amyloid Deposition in Adult Rats

Background: Extremely low-frequency electromagnetic fields (ELF-EMFs) have gathered significant consideration for their possible pathogenicity. However, their effects on nervous system functions were not fully clarified. In this study, our aim was to assay the effect of ELF-EMFs with different intensity on memory, anxiety, antioxidant activity, beta amyloid (Aβ) deposition and microglia populat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2017